
exponents (n~) in [2] was taken from experiment, which permitted avoidance of additional hy- 
potheses about the constance of ~T or L across the wake. 

NOTATION 

Ui,ui, mean and fluctuating velocity components; U~, free stream velocity; AU = UI -- U~, 
velocity defect; uiu j Reynolds stress; q2 = -2- twice the kinetic energy of turbulence; 
~=v(~udaxk) = , rate of turbulene energy dissipation; d, maximal vertical body dimension; xi, 
Cartesian coordinates; xl, coordinate along the main flow; x2, vertical coordinate; I, Taylor 
microscale; ~==x=/Su; ~=x2/8~, dimensionless coordinates. Subscript: m, maximal value; 0, 
value on the axis; ~, value in the free stream; (), mean value. 
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MOTION OF VISCOELASTIC LIQUIDS IN A POROUS MEDIUM 

I. M. Ametov and M. B. Dorfman UDC 622.276.031:532.13 

Nonlineareffects occurring in filtration of viscoelastic liquids are considered. The 
qualitative differences betweenone-dimensional and planar cases and between motion 
in homogeneous and inhomogeneous porous media are demonstrated. 

Motion of viscoelastic liquids in a porous medium can be describedby a filtration law 

of the form [1-3] 

k 
Llu --  grad (L~P), 

(1) 

where the operators Ll, L2 have the form 

n i 

~~ T i 0 h L ~ = I +  Z, h e ,  
h =  1 

i 
where T k are the relaxation time Spectra. 

These models permit consideration of the unique features of viscoelastic liquid fil- 
tration, the major one of which is lengthening of transient processes in the porous medium, 
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caused by the relaxation time spectrum. We will note that Eq. (i) is linear. Numerous 
experimental studies indicate thatrelaxation times are of the order of magnitude of 10 3- 
lO s see. 

We will consider a generalization of the model of Eq. (i), using the full time derivatives 
in writing the filtration law. Within theframework of this modelone can obtain a description 
of the nontrivial qualitatively unique features of viscoelastic liquid filtration observed in 
corresponding experiments, lt should be stressed that these effects areproduced by the non- 
linear characterof the equations obtained, while use of partial time derivatives in the fil- 
tration law leads only to an extension of transient processes. 

It should also be noted that nonlinear effects are also observed in a steady-state 
viscoelastic liquid filtration regime [4]. 

Commencing from these facts, we will write the filtration law in the form 

I I  - -  vP  -l- T vP -1- - -  (uv )  v P  
~ m . " (2) 

Thus, Eq. (2) differs from Eq. (i) in that it contains the full time derivative. For 
viscous liquids the corresponding nonlinear terms are small and can be neglected. Under the 
conditions considered herein, the coefficient standing b~fore these terms, the relaxation 
time T, is quite large and these terms cannot be dropped. 

We note that at low filtration velocities where uT<<Im, the nonlinear term in Eq. (2) 
can be neglected, whereupon the expression reduces to filtration law (i). We can introduce 
the Debour number D = uT(~m) -~ such that the nonlinear terms are insignificant at D <<I. 

Traditionally, the filtration properties of a petroleum stratum have been studied in a 
core sample with steady-state regime. Under such conditions the velocity and pressure 
gradient are constant, and we can obtain Darcy's law from Eq. (2). At the same time, the 
situation changes for steady-state, but non-one-dimensional flows. For example, we will 
consider planar filtration. We have: 

whence we obtain 

U y - -  

k [ aP T / a~p a2p~] 
--gr + m a - f g f y / '  

k [ oP + r ( o P:] 

k ( 
( 1 +  - -  

le 

~t (1-1- - -  

T____k_k aap ,~ oP Tk 8zP ap l-[- 
m~ @2 ] Ox m~ OxOg Og 

m~ Ox ~ m'--~ Off ~m z O-~y ] 

~m OxOg Ox ~m Ox Og 

~m Ox a ~m ay z" ~m 2 \ O-~y ] 

Thus, the filtration equations are nonlinear, so that steady-state flows will differ 
qualitativelyin the linear and spatial cases. 

We will analyze liquid motion in an inhomogeneous medium. Let the relationship k(x) 
one-dimensional flow be known. Then Eq. (2) gives 

for 

U - -  k(x) ( dd__~__I_ T_____~u --.d2P ) = consI. 
m dx a ( 3 ) 

In formulating the problemwe require not two, as is usually the case, but three boundary 
conditions. We have the two traditional conditions: P(O) = P0; P(1) = 0. We write the third 
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condition in the form: ~td2P,0__~ --0 , or, considering Eq. (3), u(0) =-- 
k(O~ dP (O) 

dx ~ ~ dx 
Physically, this condition means that in the initial section whence the filtration flow com- 
mences, the relaxation properties do not manifest themselves and the filtration rate is de- 
termined by Darcy's law. For motionin a porous medium with constant permeability this con- 
dition ensures a linear pressure distribution overspecimenlength and a linear relation- 
ship between the pressure head and the flow rate, as has been observed in experiment. 

We will first consider the case where the permeability decreases with length. For 
definiteness, we take k(x) = k0exp(--bx). 

Solving this problem, we find 

Po-- ~tu~T t~u --  Ixu exp(b/)+( Ixu T~tu~" ~tu )exp( lm ) .  (4) 

For motion in the direction of increasing permeability we take k.(x)=koexp [--b(l--x)] . 

This case can be reduced to the one considered previously by taking k.(x)=-kl em.p (bx)', where 
k1=kgexp (--bl) . Then, replacing k0 by k0 exp (--bl) in Eq. (4) and changing the sign of the 
parameter b, we obtain 

Pol p'u2T --~ ~-~ko ) exp(b/)-- p,u 
k-----~ bko(1 TUb)m "l- 

ieu ~u ~u2T]exp(b l lm ) 
TUbm ) bko ko Tu " 

+[ 
bko (1 -- - -  

Calculations with Eq. (4) show that depending on the law of permeability change over 
length the filtration rate will differ for an identical pressure head. Thusfor motion in 
the direction of increasing permeability the filtration rate provesto be higher than for 

motion in the opposite direction. 

Analysis reveals that for low values of relaxation time the difference between pressure 
heads for change in the direction of motion is insignificant, i.e., D<<I. In the other 
limiting case, where D>> i, the liquid does not succeed in relaxing, and the effect in 
question is also not observed. The major contribution to resistance is then given by the 
term %T. Under intermediate conditions pressure heads will differ by a factor of several 

times. 

We will now consider planarradial filtration in ahomogeneous stratum. In this case 
the function P = P(r) is nonlinear and dZP/dr z # 0. In connection with the fact that for 
filtration from the stratum into the well and from the well into the stratum dZP/dr z changes 
sign, one should expect a change in filtration rates for one and the same pressure head. 
Below we will obtain an expression to estimate this"hysteresis"effect. In deriving the 
following expressions (as was done in deriving Eq. (2)) a positive velocity (flow rate) 
value corresponds to motion away fromthe origin of the coordinate system. 

For filtration from the stratum into the well the boundary conditions are formulated 

as follows: 

dP FQ Ixq r-=Re P=O; r = R  P=Po,  ~ = - -  - - ,  
dr 2akhR kR (5) 

where q = Q/2~h; h being the thickness of the stratum. 

Thus, the problem reduces to solution of the equation 

~P m dP ~m 
dr 2 Tq dr kT 

(6) 
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for the boundary conditions of Eq. (5). 

We reduce Eq. (6) to dimensionless form: 

(3 d~P ~r ,m~  dP , btm 

r dr~ rqcz dr ,  kT  

Taking ~r,  = r; ~P,  = P; a =-]/T-q/m; ~-= qt~t/k, in place of the preceding expression, we obtain 

d2P dP r -  : : -  1 (7) 
dr z dr 

(we omit the subscript * in Eq. (7) and below). 

In dimensionless form, boundary conditions Eq. (5) can be written as: 

dP 1 
r : = R o  P = O ;  r • R  P - -  Po, dr R (8) 

The integral of Eq. (7) with boundary conditions (8) has the form 

P 0 =  1 exp - - - ~ - -  exp dr q- j" exp 7 t'exp --- dndr. (91 
R ~c ; 

I t  f o l l o w s  f rom Eq. (9) t h a t  t he  dependence  o f  f l o w  r a t e  on p r e s s u r e  head f o r  a v i s c o e l a s t i c  
liquid is nonlinear. 

For motion from the well into the stratum the following boundary conditions exist : 

dP 1 
r - - R e  P = Po, - -  ; r -- R P=:O.  (i0) 

dr Re 

The integral of Eq. (7) with boundary conditions (i0) has the form 

P o =  Re 1 exp ~cl'nexp(--r2/dr+t'exp('--r '~[cexp~--2~dtldr'\2j2J~\]'~ , . (11) 

Comparison of Eqs. (9) and (Ii) shows that the flow rate of a viscoelastic liquid during 
filtration with a constant pressure head depends on the direction of the process -- Eqs. (9) 
and (ii) are not identical. 

Experiments were performed with a poured radial model of a stratum in the form of a 
circular sector with outer radius 0.55 m and linear radius of 0.01 m (well contour), aperture 
angle of 18 ~ and height 0.05 m. In the experiments steady state filtration of a polymer 
solution was carried out for different flow directions ("from the well," "into the well") by 
plotting indicator lines. 

The porous medium was formed by densely packed quartz sand with grain diameter ~0.i mm. 
An aqueous solution of polyacrylamide with concentration varying from 0 to 0.2% by weight 
was used as the viscoelastic liquid. Before performing each experiment at a given concen- 
tration level liquid was passed through the model until the liquid viscosity at the output 
equalled that at the input. In all cases the quantity of solution required did not exceed 
five times the pore volume of the model. After doing this a steady state liquid fil- 
tration regime was established, i.e., for constant flow rate pressure at the input and output 
of the model were stabilized and readings made. 

The flow rate of the polymer solution was measured by the weight method over the course 
of 20 min. To eliminate incidental effects during filtration with a specified polyacrylamide 
concentration the flow direction at various pressure heads was varied randomly. Results of 
the study are shown in Fig. i. As is evident from Fig. 2, change in the system filtration 
resistance coefficient, which can be characterized by the ratio of flow rates for extraction 

545 



-7 

, .><>- ,. 

o o, 4e A4 io s 

O U t  

Oin 

2 

I I l 

0 0,05 qiO 0/5 OpA A 

Fig. i Fig. 2 

Fig. i. Flow rate of aqueous solution of polyacrylamide Q (m3/sec) 
vs pressure head AP (Pa) for radial steady-state filtration: 1-5) 
flow into 'Well"; 1'-5') pumping into "stratum"; I, i') 0.025% PAA; 
2, 2') 0.05; 3, 3') 0.i0; 4, 4') 0.15; 5, 5') 0.020. 

Fig. 2. Flow rate '~ysteresis" Qout/Qin for polymer solution vs 
polyacrylamide concentration CpAA (wt. %). 

and pumping into thewell for identical pressure heads, shows a tendency to increase with in- 
crease in the viscoelastic properties of the solution, since it is obvious that with increase 
in polyacrylamide concentration the rheological properties of the liquid change in proportion 
to this concentration .... 

NOTATION 

P, pressure; u, filtration velocity; k, permeability; m, proosity; T, relaxation time; 
p, viscosity; x, y, coordinates; t, time; l, length; D, Debour number, a dimensionless parameter. 

iI 

2. 

3. 
4. 
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